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CONVERSION FACTORS, VERTICAL DATUM, AND ABBREVIATED UNITS OF MEASURE

Mulitiply By To obtain
Length
inch (in) 254 millimeter
inch (in) 25,400 micrometer
foot (ft) 0.3048 meter
mile (mi) 1.609 kilometer
Area
acre 0.4047 hectare
square mile (mi?) 2.590 square kilometer
Volume
gallon (gal) 3.785 liter
Flow
gallons per minute (gal/min) 3.785 liter per minute
million gallons per day (Mgal/d) 0.04381 cubic meter per second
Rate of Accumulation
inch per year (in/yr) 25.4 millimeter per year

Temperature, in degrees Celsius (°C), can be converted to degrees Fahrenheit (°F) by use of the fol-
lowing equation:
°F=1.8(°C) + 32

Vertical Datum: In this report “sea level” refers to the National Geodetic Vertical Datum of 1929
(NGVD of 1929)—a geodetic datum derived from a general adjustment of the first-order level nets
of both the United States and Canada, formerly called Sea Level Datum of 1929.

Other abbreviated units used in this report: Chemical concentration is given in milligrams per
liter (mg/L) or micrograms per liter (ug/L). These units express the concentration of chemical con-
stituents in solution as weight (milligrams or micrograms) of solute per unit volume (liter) of solvent
(water). Volumes of water-quality samples are given in liters (L) or milliliters (mL). Pore sizes of
membrane filters are given in micrometers (Lm).

Specific conductance of water is expressed in microsiemens per centimeter at 25 degrees Celsius
(uS/cm). This unit is equivalent to micromhos per centimeter at 25 degrees Celsius (umho/cm), for-
merly used by the U.S. Geological Survey. Redox potential (Eh) is given in millivolts (mV).

Activities of tritium are presented in tritium units (TU) where 1 TU = 3.24 picocuries per liter

(pCVL).

Dissolved gas concentrations are presented in units of mg/L or as cubic centimeters of gas at stan-
dard temperature and pressure per gram water (ccSTP/g H,0). Excess-air content is given in cubic
centimeters per kilogram of water (cm3/kg H,0).

Concentrations of chlorofluorocarbons in water are given in units of picograms per kilogram
(pg/kg), and concentrations of chlorofluorocarbons in air are given in units of parts per trillion by
volume (pptv).
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Use of Environmental Tracers To Evaluate Ground-
Water Age and Water-Quality Trends in a Buried-Valley
Aquifer, Dayton Area, Southwestern Ohio

By Gary L. Rowe, Jr., Stephanie Dunkle Shapiro, and Peter Schlosser

ABSTRACT

Chlorofluorocarbons (CFC method) and tritium and helium isotopes (3H-3He method) were used
as environmental tracers to estimate ground-water age in conjunction with efforts to develop a regional
ground-water flow model of the buried-valley aquifer in the Dayton area, southwestern Ohio. This report
describes results of CFC and water-quality sampling, summarizes relevant aspects of previously pub-
lished work, and describes the use of H->He ages to characterize temporal trends in ground-water quality
of the buried-valley aquifer near Dayton, Ohio.

Results of CFC sampling indicate that approximately 25 percent of the 137 sampled wells were
contaminated with excess CFC’s that rendered the ground water unsuitable for age dating. Evaluation of
CFC ages obtained for the remaining samples indicated that the CFC compounds used for dating were
being affected by microbial degradation. The degradation occurred under anoxic conditions that are
found in most parts of the buried-valley aquifer. As a result, ground-water ages derived by the CFC
method were too old and were inconsistent with measured tritium concentrations and independently
derived *H-3He ages. Limited data indicate that dissolved methane may play an important role in the deg-
radation of the CFC’s. In contrast, the *H->He technique was found to yield ground-water ages that were
chemically and hydrologically reasonable.

Ground-water ages derived by the >H->He technique were compared to values for selected water-
quality characteristics to evaluate temporal trends in ground-water quality in the buried-valley aquifer.
Distinct temporal trends were not identified for pH, alkalinity, or calcium and magnesium because of
rapid equilibration of ground-water with calcite and dolomite in aquifer sediments. Temporal trends in
which the amount of scatter and the number of outlier concentrations increased as ground-water age
decreased were noted for sodium, potassium, boron, bromide, chloride, ammonia, nitrate, phosphate,
sulfate, and organic carbon. Elevated concentrations of these constituents in shallow ground water are
probably related to human activities. Temporal trends in which concentrations declined as ground-water
age increased may reflect natural processes that reduce constituent concentrations to low levels. For
example, the absence of nitrate detections in ground water recharged before 1980 may indicate natural
removal of nitrate by bacterially mediated denitrification. Temporal trends observed for dissolved oxy-
gen, iron, nitrate and silica indicate that these constituents may help identify recently (post-1990)
recharged ground water.
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INTRODUCTION

Glacial outwash deposits that fill the Great Miami River Valley are the main source of water for the city of
Dayton and many surrounding communities in southwestern Ohio. The regional buried-valley aquifer system was
classified as a sole-source aquifer in 1988 by the U.S. Environmental Protection Agency (USEPA) (1993). Because
of past land use and waste-disposal practices, however, the area in and around Dayton includes many sites identified
by USEPA under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and
the Resource Conservation and Recovery Act (RCRA). Although numerous site-specific hydrogeologic studies
have been done in the Dayton area, no comprehensive study of the regional hydrogeology of the buried-valley aqui-
fer has been done since the mid-1960’s (Norris and Spieker, 1966).

The City of Dayton and other municipalities that produce water from the Great Miami buried-valley aquifer
have developed, or are in the process of developing, comprehensive wellhead-protection plans to safeguard munic-
ipal well fields from contamination. Ground-water flow models used to evaluate various wellhead-protection plans,
and all USEPA CERCLA activities, are site specific in their scope. Therefore, the regional effects of chemical spills
or future development on the buried-valley aquifer as a whole are largely unknown. To address such regional issues,
USEPA entered into a cooperative agreement with the U.S. Geological Survey (USGS) in 1991 to develop a
regional ground-water flow model and hydrogeologic data base of the Great Miami buried-valley aquifer near Day-
ton. Because of widespread local interest in the regional model, a cooperative agreement between the USGS, the
Miami Conservancy District (MCD), the City of Dayton, and 21 other municipal and private entities was reached
to provide additional support for development of the regional ground-water flow model. A description of methods
and data used to construct the regional flow model is given by Dumouchelle (1998a, b).

Because many aquifer-management decisions are based on numerical models, assessing model accuracy is
important. Model evaluations are traditionally done by visual or statistical comparisons of simulated water-level
and flow data with measured water-level and flow data. Alternatively, environmental-tracer techniques that involve
measurements of chlorofluorocarbon compounds (CFC method) and tritium and helium isotopes ( H-3He method)
have been used to estimate the age of ground water in shallow unconsolidated aquifers. Ground-water ages
obtained at multiple locations and depths in an aquifer can be used to estimate rates and directions of ground-water
flow, which can then be compared with results of numerical simulations to assess model accuracy. Therefore, as
part of the agreement reached with MCD and its cooperators, an environmental tracer study was done during 1993—
96 to obtain information about the age of ground water in the buried-valley aquifer.

Specific objectives of the environmental tracer study were to (1) use environmental-tracer techniques to esti-
mate the age of ground water at selected locations in the Great Miami buried-valley aquifer, (2) apply estimates of
ground-water age to the calibration and refinement of existing numerical flow models of selected parts of the aqui-
fer, and (3) characterize temporal trends in ground-water quality of the aquifer. Results of ground-water age dating
by use of the >H->He technique and the application of ground-water ages to calibration of flow models of selected
parts of the buried-valley aquifer are given by Shapiro and others (1998) and Sheets and others (1998), respectively.
(See “Previous Investigations™ section.)

Purpose and scope

This report describes results of CFC and water-quality sampling done as part of the environmental tracer
study, summarizes relevant aspects of previously published work, and characterizes temporal trends in ground-
water quality of the buried-valley aquifer on the basis of environmental-tracer ages.

Previous investigations

The hydrogeology of the Great Miami buried-valley aquifer near Dayton is summarized in several reports,
including those by Norris and others (1948, 1950, and 1952), Walton and Scudder (1960), Norris and Spieker
(1966), Spieker, (1968), Fidler (1975), CH2M-Hill (1986a, b; 1989), Geraghty & Miller (1987), Dumouchelle and
others (1993), Cunningham and others (1994), Sheets (1994), and Ritzi and others (1994, 1995). Water-quality data
for ground water pumped from the selected parts of the buried-valley aquifer within the study area are reported in
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Norris and Spieker, (1966), Evans (1977), Pennino (1984), CH2M Hill (19864, b; 1989), Geraghty & Miller
(1987), Dumouchelle and others (1993), and Rowe (in Schalk and others, 1996).

Reports by Norris and Spieker (1966) and Spieker (1968) contain the most comprehensive description of
regional ground-water resources in the Dayton area. These reports include detailed sections on the geology and
hydrology of the glacial outwash deposits, aquifer-test data for several major well fields, and maps detailing surface
geology, bedrock-surface-elevation contours, and potentiometric surface. More recently, Ritzi and others (1994,
1995) used geostatistical methods to quantify and predict physical heterogeneity in selected parts the buried-valley
aquifer, including the distribution of low-permeability tills south of Dayton. Yost (1995) presents synoptic water-
level, streambed-permeability, and streamflow data for the Dayton area collected in September 1993. A map show-
ing water levels and flow directions in the Great Miami buried-valley aquifer based on the September 1993 data
set is given by Dumouchelle (1998a). These and other hydrogeologic data were used by Dumouchelle (1998b) to
develop and calibrate a steady-state, regional ground-water flow model of the Great Miami buried-valley aquifer
near Dayton, Ohio.

Site-specific hydrogeologic descriptions of selected parts of the buried-valley aquifer can be found in reports
that describe ground-water flow models developed for water-resource management purposes or for predicting rates
and directions of contaminant migration from known or suspected pollution sources. These include reports by
Fidler (1975), CH2M-Hill (1986a, b; 1989), Geraghty & Miller (1987), Field (1991), Dames & Moore and others
(1992), Dumouchelle and others (1993), Cunningham and others (1994), Sheets (1994), and the U.S. Department
of Energy and EG&G Mound Applied Technology Corporation (1995).

The use of environmental tracer methods to estimate ground-water age, including the CFC, 3H, and *H-’He
methods, is reviewed by Plummer and others (1993). Additional recent studies that describe the use of the CFC
and *H->He methods for estimating ground-water age include those by Dunkle and others (1993), Solomon and
others (1993, 1995), Ekwurzel and others (1994), Bohlke and Denver (1995), Cook and others (1995), Katz and
others (1995), Solomon and others (1995), and Szabo and others (1996). Studies examining the use of environmen-
tal tracers to improve the calibration of ground-water-flow models include those by Reilly and others (1994), Katz
and others (1995), Solomon and others (1993, 1995), and Szabo and others (1996).

Data and analytical methods used to determine the H->He ages of ground-water samples collected for this
study are discussed by Shapiro and others (1998). These researchers reported several complications to successful
application of the 3H-He method for age dating ground water in the Great Miami buried-valley aquifer, including
(1) sampling in parts of the aquifer affected by heavy pumping and induced infiltration of river water, (2) the pres-
ence of tritium contamination in some parts of the aquifer, and (3) elevated concentrations of radiogenic helium,
which affects interpretation of the H->He ages, in a significant percentage of the samples. Shapiro and others
(1998) evaluated the 3H->He ages for geochemical and hydrogeologic consistency. Consistency of the 3H->He ages
with known tritium geochemistry was evaluated by comparing the sum of tritium and tritiogenic helium-3
[3H+3Hem-t] against the estimated tritium-input function for rainwater in southwestern Ohio. In general, close
agreement was found between [°H+>He,;,] and estimated tritium concentrations in rainwater. Deviations from ini-
tial tritium concentrations were explained by (1) dispersion that causes lower reconstructed peak tritium values, (2)
mixing at discharge areas that caused some samples with low [3H+3Hem~t] values to have younger ages than
expected, and (3) local sources of tritium that resulted in affected samples having [3H+3Hemt] concentrations in
excess of those predicted by the rainwater input curve. Hydrologic consistency of the 3H-He ages was evaluated
by examining trends in >H-He ages as a function of depth and distance along ground-water flowpaths near the
Miami and North Miami Well Fields and the Wright-Patterson Air Force Base-Mad River Well Field area. With
few exceptions, ground-water age increased with depth and increasing distance along the regional flowpath.
Ground water also became younger as the distance between the recharge area and the major pumping centers
decreased (Shapiro and others, 1998).

Sheets and others (1998) used the *H->He ages reported by Shapiro and others (1998) to calibrate and
improve numerical flow models of selected parts of the Great Miami buried-valley aquifer. Reverse particle track-
ing was done with two existing steady-state ground-water flow models: a two-layer model of the buried-valley
aquifer near the Mound Plant, and a regional model of the buried-valley aquifer underlying the Wright-Patterson
Air Force Base-Mad River Well Field area. Results of the initial comparisons showed that *H->He ages for ground-
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water samples from shallow and intermediate-depth wells were in close agreement with the simulated ages derived
by reverse-particle tracking. Significant differences were common, however, between the two sets of ages for wells
screened in deeper parts of the buried-valley aquifer; at several wells, simulated traveltimes of several decades or
more were clearly incompatible with H-’He ages of 30 years or less. Hydrologically reasonable modifications to
the flow model of Wright-Patterson Air Force Base were shown by Sheets and others (1998) to result in improved
agreement between the >H->He ages and simulated traveltimes.

Acknowledgments

The authors thank the following persons and agencies for allowing access to monitoring wells, providing
logistical support during ground-water sampling, and furnishing hydrogeologic and water-quality data: The Miami
Conservancy District; personnel of the City of Dayton, including Lawrence Blossom and others at the Department
of Water Supply and Treatment; Douglas Hall, Assistant City Manager, and James P. Shoemaker, Office of Envi-
ronmental Protection; Wright-Patterson Air Force Base; the Ohio Department of Natural Resources, Division of
Water; the Ohio Environmental Protection Agency, Southwest District; the Miami Valley Regional Planning
Commission; the U.S. Department of Energy; Alec Bray and other personnel of E.G.&G. Mound Applied Technol-
ogies; and Roger McCready and Brent Huntsman of Terran Corporation.

ENVIRONMENTAL SETTING

General area

The study area is in southwestern Ohio and is restricted to areas underlain by the Great Miami buried-valley
aquifer near Dayton (fig. 1). Highly productive parts of the buried-valley aquifer that are used for water supply are
found along the drainages of the Great Miami, Mad, Stillwater, and Little Miami Rivers. The study area is centered
on Dayton, which is about 50 mi northeast of Cincinnati and about 65 mi west of Columbus. About 250 miZ of the
study area, including most of Montgomery County and parts of southwestern Clark County and northwestern
Greene County, are underlain by the buried-valley aquifer (fig. 1).

Census data compiled for 1990 indicate that Montgomery County had a total population of 573,809 (U.S.
Bureau of the Census, 1991). Within the study area, approximately 460,000 people live in Dayton and surrounding
communities. Dayton is a major industrial center for southwestern Ohio; factories in and around Dayton produce
automobile parts, air-conditioning units, business machines, computer equipment, paper, and chemical products.
The study area is home to Wright-Patterson Air Force Base (8,500 acres) which is northeast of downtown Dayton
and employs about 35,000 military and civilian personnel. Past industrial activities in the area included production
of refrigerators at a large plant near downtown Dayton. Because CFC compounds were the main refrigerants used
in refrigerators and air conditioners in the years prior to this study, past industrial activity may have affected the
concentration of CFC compounds in air and water in the Dayton area.

The study area is in the north temperate climate zone. Long-term precipitation data for 12 rain gages main-
tained by MCD and (or) the National Oceanic and Atmospheric Administration (NOAA) indicate that mean annual
precipitation throughout the study area is about 39 in/yr. Mean annual rainfall for the downtown Dayton station
(period of record 1883-1991) was 37.6 in., with a standard deviation of 6.1 in. The maximum annual rainfall of
55.3 in. was recorded in 1990, and the minimum annual rainfall of 23.7 in. was recorded in 1934 (Miami
Conservancy District, written commun., 1992). Mean monthly rainfall data indicate that precipitation is relatively
evenly distributed throughout the year. In June, the wettest month, precipitation normally ranges from 3.8 to 4.4
in.; in October, the driest month, precipitation normally ranges from 2.0 to 2.2 in. Mean annual temperature at
downtown Dayton and at the Dayton International Airport (about 10 mi north of downtown Dayton) during 1951—-
91 was approximately 12°C (54°F) and 11°C (52°F), respectively (National Oceanic and Atmospheric Adminis-
tration, written commun., 1992). Long-term temperature records indicate that July is the warmest month (mean
temperature 24 to 25°C) and January is the coldest (mean temperature -2 to -3°C). Annual snowfall in the study
area typically ranges from 20 to 30 in. (Harstine, 1991).
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genated VOC’s such as methylene chloride, methyl chloride, carbon tetrachloride, trichloroethylene, and vinyl
chloride.

Although the concentration of the above-listed compounds cannot be quantified, their presence or absence
provides information about the redox state of the aquifer and the presence or absence of synthetic organic com-
puonds in the sample.

Surface water. Two to four CFC ampules were collected at each surface-water site. The samples were col-
lected near the centroid of flow by use of an air-piston pump. Samples were collected just below the surface and
near the midpoint between the river bottom and river surface. The samples were collected and analyzed by use of
procedures discussed in the previous section (Busenberg and Plummer, 1992).

An' Air samples were collected in preevacuated stainless steel gas cylinders with a nominal volume of
600 cm>. The cylinders were attached to an air pump constructed of stainless steel. A piece of stainless steel tubing
about 6 ft in length was attached to the inlet port and was extended vertically from the pump during sampling. The
pump was allowed to operate for several minutes to purge previously enclosed air. After purging was completed
the valve was opened and the gas cylinder was filled with air until cylinder pressure reached 25-30 Ib/in2. At all
three sites, the pump and cylinder were placed on top of the well casing so that air was sampled at a height of
8 to 10 ft above ground surface. After sampling, the cylinder valve was closed and the sample was shipped to the
USGS CFC Laboratory in Reston, Va., for analysis.

Collection and analysis of ground-water samples for dissolved gases

Twelve wells were sampled for dissolved gases (N5, Ar, O,, CO,, CHy) using 500-mL sidearm chamber
(SAC) bottles (Hobba and others, 1977; Pearson and others, 1978). Samples were collected by connecting the SAC
bottle to the pump discharge line with flexible tubing. Ground water filled the chamber from the bottom, forcing
air out of the chamber. Flushing was continued for several minutes, and then the upper and lower valves were
closed. After both chamber valves were closed, the valve to the sidearm was opened, allowing dissolved gases to
enter the newly created headspace. In the laboratory, the SAC bottle was attached to a gas chromatograph and the
headspace gases were analyzed by methods described in Busenberg and others (1993). By use of measured tem-
perature, sidearm pressure, and sample-volume data and appropriate Henry’s Law constants, the concentrations of
dissolved gases in the sample were calculated. All analyses of samples collected with sidearm chambers were com-
pleted within 2 weeks of sample collection.

In addition, unused CFC ampules collected at 21 wells were analyzed for methane at the USGS CFC Labo-
ratory in December 1995. These analyses were done on samples from wells where degradation of CFC’s was sus-
pected. Methane analyses were done by inserting a glass ampule into a rubber sleeve attached to a gas
chromatograph. The neck of the ampule was broken off under vacuum, and headspace gases were analyzed for
methane by gas chromatography. Measured pressure and temperature, an estimate of headspace volume in the
ampule, and the appropriate Henry’s Law constant were used to calculate the approximate methane concentration
of the sample. Because of the large uncertainty in the estimate of headspace volume, reported methane concentra-
tions are qualitative (accuracy estimated to be + 50 percent). The analytical detection limit for methane by this
method is 0.003 mg/L.

The representativeness of the methane data obtained from the CFC samples with respect to actual aquifer
conditions at the time of sampling must be assessed in view of the long interval between sample collection and
analysis. This interval ranged from 16 to 30 months (2.5 years), depending on when the sample was originally col-
lected. During this time, microbial reactions with dissolved organic compounds or colloidal organic material in the
sample could have produced methane. Production of methane during sample storage is indicated by comparison of
methane data obtained for wells where both SAC and unused CFC ampules were analyzed for methane. At two
wells (MT-296 and MT-297), methane concentrations were lower in the initial SAC sample than in the later CFC
ampules, although the observed difference in CFC ampule data from well MT-296 was within the analytical preci-
sion of the ampule analyses. Ground water from MT-296 is also known to be contaminated with a variety of VOC’s,
whereas no VOC'’s (halocarbons) were detected on the CFC chromatogram for the ground-water sample collected
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from MT-297. Ground water sampled from MT-286, which had an on-site DO concentration of 0.5 mg/L, did not
yield detectable quantities of methane in either analysis.

Collection and analysis of ground-water samples for tritium, helium, and neon

Ground-water samples for analysis of tritium, helium isotopes, and neon were collected in 3-ft sections of
1/4-in.-diameter copper tubing (nominal volume 40 cm?). The copper tube was attached to the pump discharge line
by a short length of polypropylene tubing secured by stainless steel hose clamps. The copper tube was mounted in
a metal holder with stainless steel pinch-off clamps at each end; these clamps were crimped shut at both ends of
the tube after sampling was completed. Two copper tubes were filled at each well. Additional water samples were
collected in 1-L glass or high-density polyethylene bottles for tritium analysis in the event of leakage from the cop-
per tubes. Samples were shipped to the Lamont-Doherty Earth Observatory Noble Gas Facility for gas extraction
and analysis. Methodology and analytical precision associated with tritium, neon, and helium isotope analyses are
described by Shapiro and others (1998).

Estimation of ground-water age

In the following sections, the basic theory and assumptions used to estimate the recharge age of ground water
by use of environmental tracers are briefly described. The two environmental tracers used to estimate ground-water
age for this study are the chlorofluorocarbons (CFC’s) and tritium-helium 3 (®*H-3He). Because of various uncer-
tainties and assumptions that are associated with sampling, analysis, and interpretation of the environmental tracer
data, ground-water ages estimated by use of the CFC and 3H-3He methods are regarded as apparent ages and must
be carefully reviewed to ensure that they are geochemically consistent and hydrologically realistic.

Chlorofluorocarbon method. CFC’s are manufactured VOC’s that have been used extensively use as refrig-
erants, aerosol propellants, cleaning solvents, and blowing agents in a variety of industries. The concentrations of
CFC’s in air have steadily increased since CFC’s were first introduced in the 1930’s. However, CFC’s are also
believed to catalyze the destruction of atmospheric ozone and are a known greenhouse gas (Rowland, 1991). As a
result, worldwide controls have been instituted in an effort to reduce global atmospheric CFC concentrations. Data
reported through the mid-1990’s (E. Busenberg, U.S. Geological Survey, written commun., 1996) indicate that con-
centrations of CFC-11 and CFC-113 in air are starting to level off or decline in response to the new controls; hence,
CFC dating of modern ground water will become less precise in the future as concentrations of CFC compounds
used for dating decline further.

The use of CFC’s as a dating tool is based on the more or less steady increase in northern troposphere CFC
concentrations that has accompanied the large-scale use of CFC compounds in various industries. CFC’s released
into the atmosphere are partitioned into rainwater. The equilibrium solubility of individual CFC compounds in
water (Ccge) is governed by gas-liquid exchange equilibria, which are expressed in terms of Henry’s Law:

Ccrc = Kepcas *Ferc., )

where K is the Henry’s Law constant for the individual CFC compound at a known temperature (T) and salinity
(S), and P is the atmospheric partial pressure of the CFC compound. Henry’s Law constants for CFC-11, CFC-12,
and CFC-113 as a function of temperature and salinity have been compiled (Warner and Weiss, 1985; Bu and
Warner, 1995). Concentrations of CFC-11, CFC-12, and CFC-113 in continental U.S. air from 1940 to the present
have been reconstructed from CFC production records (McCarthy and others, 1977; Chemical Manufacturers
Association, 1992) and atmospheric measurements that began in the mid-1970’s (Busenberg and others, 1993;
Elkins and others, 1993; Fisher and Midgley, 1993; and E. Busenberg, written commun., 1996). Concentrations of
CFC-11, CFC-12, and CFC-113 in air and water in equilibrium at 10°C are shown in figure 9.
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To calculate the age of a ground-water sample (or recharge year, if age is subtracted from the date of sam-
pling), concentrations of the individual CFC compounds in ground water are divided by the appropriate Henry’s
Law constant to give the partial pressure of the CFC compound in air at the time the sample was isolated from the
atmosphere. Because the Henry’s Law constants are temperature dependent, an estimate of the recharge tempera-
ture is needed. The recharge temperature is the temperature at the base of the unsaturated zone and is usually close
to the mean annual air temperature. Recharge temperatures can be estimated independently by a variety of tech-
niques; the average recharge temperature of 10°C used in this study (see section on dissolved gases and recharge
temperature) was estimated by use of oxygen and deuterium isotope data, dissolved-gas (N,/Ar) ratios, and long-
term air temperature records for the study area. The calculated partial pressure is then compared with the atmo-
spheric concentration curves (fig. 9) to derive the age of the sample. It is assumed that CFC concentrations in
recharge waters are in equilibrium with the soil atmosphere and, more importantly, that CFC concentrations in the
soil gas are equal to those found in air (Busenberg and others, 1993). These assumptions are reasonable for the
study area because depth to the water table is generally 20 ft or less, and most soils in recharge areas are moderately
to highly permeable.

Ground-water ages derived by the CFC technique are considered to be minimum ages because trace-level
contamination by small amounts of CFC compounds introduced during sampling or mixing of ground water of dif-
ferent ages can never be completely excluded. Trace-level contamination affects the reliability of older recharge
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Figure 9. Concentrations of chlorofluorocarbon compounds CFC-11, CFC-12, and CFC-113 in air and
water at equilibrium at 10°C and 760 feet above sea level. (Data from E. Busenberg, U.S. Geological
Survey, written commun., 1996.)

Methods of data collection and analysis 21



ages to a greater degree because of lower CFC concentrations in older waters (fig. 9). Other processes that can affect
the reliability of CFC ages include gross contamination, sorption, microbial degradation, hydrodynamic dispersion,
and diffusion in the unsaturated zone (Weeks and others,1982; Russell and Thompson, 1983; Busenberg and Plum-
mer, 1992; Lovley and Woodward, 1992; Busenberg and others, 1993; Dunkle and others, 1993; Plummer and oth-
ers, 1993; Reilly and others, 1994; and Katz and others, 1995). Uncertainty in the recharge temperature affects the
recharge age to a varying extent. Uncertainty of several degrees Celsius causes an uncertainty of less than a year
in waters recharged prior to 1975. For waters recharged in the 1980’s, an uncertainty of 2°C results in an uncertainty
of 2 to 3 years. For post-1989 waters, a 2°C uncertainty in the recharge temperature can cause errors of several
years or more (Busenberg and Plummer, 1992; Plummer and others, 1993).

Tritium-helium-3 method. Tritium (*H), the radioactive isotope of hydrogen, has been used extensively as
a hydrologic tracer and dating tool. Although tritium is produced naturally in the upper atmosphere, its use as a
hydrologic tracer is related to the injection of large quantities of tritium into the atmosphere during atomic-weapons
testing in the 1950’s and early 1960’s. Peak tritium activities in southwestern Ohio rainwater are believed to have
approached 2,000 tritium units (TU; 1 TU equals 3.24 picocuries per liter or 1 tritium atom per 1018 hydrogen
atoms) (fig. 10). The atmospheric-testing peak therefore provides an absolute time marker from which to estimate
ground-water age. However, because radioactive decay and hydrodynamic dispersion have greatly reduced maxi-
mum tritium concentrations in ground water, identification of the 1960’s atmospheric-testing peak has become
increasingly difficult. Therefore, tritium by itself is used only as a qualitative indicator of ground-water age; detect-
able concentrations of tritium (> 1-2 TU) indicate that some fraction of the water recharged the aquifer after 1952.

The *H-He dating method is based on the decay of tritium to its daughter product, the noble gas helium 3
(3Hem~[, tritiogenic helium). The sum of tritium and its daughter product (3H+3Hem-[) represents a conservative
quantity equivalent to the amount of tritium in rainwater at the time of recharge, assuming that helium produced by
tritium decay is not lost by upward diffusion to the unsaturated zone. This assumption is considered valid for aqui-
fers where vertical flow velocities exceed approximately 1.5 ft/yr (Schlosser and others, 1988, 1989; Poreda and
others, 1988). Because helium in ground water is derived from several sources, however, a detailed evaluation of
the various components of the helium budget is required to obtain accurate 3H-3He ages. Procedures used to eval-
uate and correct the helium data for nontritiogenic sources of 3He in samples collected during this study are
described by Schlosser and others (1988, 1989) and Shapiro and others (1998).

Once the amount of tritiogenic 3He is known, the H->He age is then calculated from the daughter/parent
ratio (3He[rit/3H) by use of the standard decay equation:

He, .
T = 122 | 14 S5 ()

where T is the SH->He age, in years; 3Hem-t is the amount of >He derived from tritium decay, in TU; 3H is the mea-
sured tritium concentration, in TU; and T}, is the half-life of tritium (12.43 years) (Schlosser and others, 1988,
1989; Solomon and Sudicky, 1991; Solomon and others, 1993). In simgle terms, the concentration of tritiogenic
3He will increase as tritium decays; thus, older waters will have higher Hem-tl3H ratios. The age derived by use of
this technique represents the time elapsed after rainwater or infiltrating surface water was confined below the water
table; it is further assumed that diffusion, dispersion, contamination, or mixing at the well screen have not affected
the concentrations of >H or *He in the sample. Apart from radioactive decay of tritium, >H and >He are both chem-
ically inert and therefore are unaffected by microbial degradation or sorption, processes known to affect the reli-
ability of the CFC dating method.
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Figure 10. Estimated annual mean tritium concentration in rainwater, 1952-91, southwestern Ohio.
(Tritium concentrations in original rainwater based on tritium deposition estimates given by Michel, 1989,
and R.L. Michel, U.S. Geological Survey, written commun., 1991.)

RESULTS OF ANALYSES

This section describes the analytical results obtained for water-quality and environmental-tracer samples col-
lected for this study. Ages of ground-water samples estimated by use of the CFC and *H->He methods also are sum-
marized.

Onsite water-quality measurements, major ions, and selected trace constituents

Ground-water-quality samples were collected to assess geochemical conditions in the aquifer at the time of
environmental-tracer sampling and to assess relations between ground-water ages and ground-water quality in the
buried-valley aquifer. The ground-water-quality data are used to characterize redox conditions in the buried-valley
aquifer because the reliability of the CFC dating technique is known to be adversely affected by anoxic conditions
in an aquifer (Dunkle and others, 1993; Katz and others, 1995). Additional water-quality data were obtained for
surface-water samples collected during the CFC reconnaissance survey of streams and rivers in the Dayton area.

Ground water. Construction, water-level, onsite, and laboratory-derived water-quality data for the 137
wells sampled during this study are available online at http://oh.water.usgs.gov/reports/daytonwells.html or as hard
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copy from the Columbus, Ohio, office of the USGS. Onsite analyses done immediately prior to collection of water-
quality samples yielded a median temperature of 14°C,a median pH of 7.2, a median specific conductance near
800 ps/cm, a median DO concentration of 0.1 mg/L (the reporting limit), and a median redox (oxidation-reduction)
potential of about 140 mV (reported relative to the Standard Hydrogen Electrode or SHE) (fig. 11). Of these data,
the distribution of DO is particularly noteworthy because it indicates that the majority of wells sampled in this study
were screened in anoxic, and hence chemically reduced, parts of the buried-valley aquifer (DO < 10 umol O, or
0.3 mg/L).

On the basis of major-ion chemistry, nearly all of the ground-water samples are classified as a calcium-mag-
nesium-bicarbonate waters. This is illustrated on a trilinear diagram (fig. 12), which graphically plots water types
on the basis of the milliequivalent percentages of major cations and anions in the water. The cation and anion tri-
angles both show relatively linear trends towards more sodium- and chloride-rich compositions. Such trends could
be caused by the presence of deicing salts in winter and spring runoff that recharges the buried-valley aquifer, or
they could represent mixing with slightly saline sodium-chloride-type waters from bedrock shales (Dumouchelle
and others, 1993). Several of the most sodium- and chloride-rich samples are from shallow Mound Plant wells that
were screened at or near the contact between the buried-valley aquifer and bedrock shales.

Boxplots of major-ion data confirm that calcium, bicarbonate, and, to a lesser extent, magnesium, are the
dominant ions in the ground water (fig. 13). The boxplots indicate a near-normal distribution for these constituents
that is probably related to rapid dissolution and equilibration with calcite and dolomite, which are common in aqui-
fer sediments. The distributions of sodium and chloride data are the most positively skewed; outlier data (as defined
in fig. 13) reflect addition of these elements to ground water from road salt applied at the surface or saline water
from bedrock shales. The data distributions of nearly all the trace and minor constituents appear positively skewed
because several have median concentrations that are at or near their respective detection limits. The median dis-
solved-iron concentration, about 0.55 mg/L, exceeds the Secondary Maximum Contaminant Level for drinking
water set by the U.S. and Ohio Environmental Protection Agencies (U.S. Environmental Protection Agency, 1991).
At concentrations near or above this limit, iron imparts a metallic taste to the water and may cause staining of laun-
dry, utensils, and bathroom fixtures.

Data for redox-sensitive chemical species show that DO concentrations indicating oxic or suboxic conditions
are rarely found at depths greater than 40 ft below the water table (fig. 14). In comparison, nitrate concentrations
of a few milligrams per liter or less persist to depths approaching 60 ft below the water table. Below this depth,
detectable amounts of nitrate (> 0.05 mg/L NO;™ as N) are uncommon, an indication of possible removal of nitrate
by denitrification. Further evidence of denitrification is the occurrence of nitrous oxide (N,O) peaks in the CFC
chromatograms and dissolved-nitrogen (N,) concentrations much greater than those expected for gas-water equi-
librium at the range of recharge temperatures expected for the study area. (See sections on other species and dis-
solved gases.) Dissolved-iron concentrations show no consistent trend with depth. Onsite analysis of dissolved-iron
speciation by spectrophotometric techniques (Hach, 1993) indicated that nearly all dissolved iron in anoxic ground
water is present as ferrous (Fe?*) iron. The majority of ground-water samples lacking detectable concentrations of
dissolved iron were collected from shallow wells that yielded ground water with detectable amounts of DO. At the
near-neutral pH of ground water in the buried-valley aquifer, oxidation of ferrous iron to ferric (Fe>*) iron would
occur quickly in the presence of measurable DO. The low solubility of ferric hydroxide [Fe(OH);] would then pre-
vent dissolved-iron concentrations from exceeding the analytical detection limit of 3 pg/L (Hem, 1989).

In contrast, sulfate concentrations remain fairly uniform with depth (fig. 14), an indication that sulfate reduc-
tion is not an important redox process in the buried-valley aquifer. Although the odor of H,S was only rarely noted
during sampling, peaks present in chromatograms produced during analysis of the CFC samples (see below) indi-
cate very small quantities of H,S (or methyl sulfide) in about 30 percent of the anoxic ground-water samples.

Reducing conditions are also indicated by the presence of dissolved methane in anoxic ground-water sam-
ples. Detectable concentrations of methane indicate reducing conditions. Methane can be of natural origin, or it can
be produced by microbial degradation of organic chemicals (hydrocarbons, VOC’s) of human origin. Of the
25 samples that had detectable methane concentrations, 5 also had detections of non-CFC halocarbons of human
origin. This finding suggests that meth@he iinthe majority of the samples is of natural origin. Methane concentra-
tions show no distinct trend with deptfs

24 Environmentai tracers, ground-water age, arid water-quaiity trends, Dayton area, Ohio



20

19

18

17

16

15

14

13

12

WATER TEMPERATURE, IN DEGREES CELSIUS

11

L L L A B B B0 AR BL N LR BLIR N |

(137)
T

ded

pasa b s ala sl ool el

10

(137)
T

§ 8 & 8

LNLANL B N L AN AN B S BN S L D B BN N N BN BN S N A N SN NN N S BN BN N A S

REDOX POTENTIAL, IN MILLIVOLTS
8

PN B SO R

s Loa oo a ) 44

Figure 11. Distribution of temperature, specific-conductance, pH, dissolved-oxygen, and redox-potential

SPECIFIC CONDUCTANCE,
IN MICROSIEMENS PER CENTIMETER AT 25 DEGREES CELSIUS

137]
2,200 ¢ T )

2,000

0]0)

1,800

1,600

1,400

 *

' BTN S BT AT EPU I NN ST AT ST AT AT

1,200

1,000

800

600

LANL B L S L B LI BB B LB LR L N LM LA L B B B S B N U M A B LN B

400 1

(136)

(137) (136)

7.8 [ T ]

[ ] ; o) ]

[ ] 11F 3

: ] EF o 1

76 . 3 o 3

[ ] z 'OF O ]

[ ] g r ]

7.4} ] 2 °F 1

2o ] £ 8 o 7

=z ] e 2 ;

2 I 1 2 7k -

) i ) = sF O .

2 ok 1 & F 9

o 70F - 9 sk @] .

z i ] 5 F ]

= | ] Q 4F E

6.8} . > S 3

[ * ] 9 ; ]

L E 0 o = ]

i ] o 2f 3

6.6} . ; % ]

i - 1 E

6.4l ot ‘5' .

EXPLANATION

Number of observations

Outlier data value more than 3 times the
interquartile range outside the quartile

Outlier data value less than or equal to 3 and
more than 1.5 times the interquartile range
outside the quartile

Data value less than or equal to 1.5 times the
interquartile range outside the quartile

75th percentile
Median
25th percentile

Detection limit

data for the buried-valley aquifer, Dayton area, southwestern Ohio.

Resuits of analyses

25



CALCIUM CHLORIDE
PERCENTAGE OF TOTAL MILLIEQUIVALENTS PER LITER

EXPLANATION

SAMPLES FROM WELL OR WELL FIELD INDIRECTED:

+ Wright-Patterson and Mad River well field area
A Miami well field area

0 Mound plant

] Reconnaissance

Figure12. Trilinear diagram illustrating major-ion data from the buried-valley aquifer, Dayton area,
southwestern Ohio.
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Evaluation of the ground-water analyses by use of the equilibrium speciation program WATEQA4F (Ball and
Nordstrom, 1991) indicates that most ground water in the buried-valley aquifer is saturated with respect to dolomite
(CaMg(CO3),) and saturated to supersaturated with respect to calcite (CaCOj3). Ground water is generally super-
saturated with respect to the ferrous iron-carbonate mineral siderite (FeCO3) and various forms of silica (SiO5),
including quartz and chalcedony. Ground water is undersaturated with respect to fluorite (CaF,) and gyspum
(CaSO4-2H,0). As will be discussed later, the degree of saturation of ground water in the buried-valley aquifer
with respect to certain minerals is related to apparent ground-water age.

Surface water. Compared to ground-water, data for the 21 surface-water samples collected in September
1995 indicate higher pH (median pH = 8.2), slightly lower specific conductance (median specific conductance =
725 ps/cm), and oxic conditions (percent DO saturation values range from 70 to 140 percent; median DO =
8.6 mg/L) (table 1, back of report). Boxplot summaries of major-ion data indicate that the majority of surface-water
samples are classified as calcium-magnesium-bicarbonate waters (fig. 15), although samples from the Great Miami
River downstream from the Dayton wastewater-treatment plant are classified as mixed cation-mixed anion waters
because of elevated sodium and chloride concentrations that are probably derived from wastewater-treatment-plant
effluent.

Compared to ground water, surface water in the Dayton area has lower dissolved silica, iron, manganese, and
ammonia concentrations but higher nitrite plus nitrate concentrations. Despite these differences, the major-ion
composition of surface water and ground water in the Dayton area are quite similar. This similarity reflects the fact
that a significant percentage of the flow in area streams is ground water discharged from the buried-valley aquifer.

Chlorofluorocarbons

Concentrations of the CFC compounds CFC-11, CFC-12, and CFC-113 were determined on ground-water
samples collected from 135 wells, surface-water samples collected at 20 locations, and air samples collected at
3 sites.These data are summarized in the following sections.

Ground water. CFC concentrations were highly variable in ground water, ranging from below the detection
limit (<1 pg/L for all three CFC compounds) to maximum concentrations of 28,650, 40,880, and 90,240 pg/L of ¢ 6
CFC-11, CFC-12, and CFC-113, respectively (table 2, at back of report). Highly elevated concentrations indicate ) )a.‘,\” #(
that addition of CFC compounds from nonatmospheric sources has occurred, as concentrations of CFC-11, CFC- o

: <

concentrations are based on CFC-11, CFC-12, and CFC-113 concentrations in at
trillion by volume, respectively (fig. 9), and air-water equilibration at a temperats
760 ft (the average surface elevation of wells sampled for this study).
Ground-water samples with CFC concentrations that were only slightly above (less than 5 percent) the 1994
air-water equilibrium concentrations were considered to be modern waters that probably recharged the buried-val-
ley aquifer in a year or less. However, samples that had CFC concentrations greater than 5 percent above the equi-
librium concentrations probably represent contamination of the sample by CFC’s from nonatmospheric sources.
Such samples cannot be used to estimate ground-waterage. The percentage of samples suitable for dating by the
CFC method varied for the three CFC compounds & ercent for CFC-11; 67 percent for CFC-12, and about
79 percent for CFC-113. The data indicate that nearly a third of the wells sampled had CFC-12 coations

e of 10°C at an elevatiof of

above the range suitable for dating by the CFC method. The relatively large percentage of sampleg 0 33 per-
cent) that could not be dated because of contamination with excess CFC’s is not surprising given the ntarfy potential
sources of these compounds in urban and industrial parts of the Dayton area. Calculated recharge years for ground-
water samples that had CFC concentrations suitable for estimating ground-water ages are reported in table 2 (at
back of report).

Surface Water. CFC concentrations were determined on 20 of the 21 surface-water samples collected over
a 2-week period from September 11 to 25, 1995 (samples from the 21st site were broken in transit) (table 3). As
discussed previously, streamflow data for the sampling period indicate a substantial component of surface runoff
derived from basinwide rainstorms (> 0.2 in. per day) on September 9, 13, and 20, 1995.
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Figure 15. Distribution of major- and minor-ion data for surface-water samples, Dayton area,
southwestern Ohio.
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Using temperature data collected at the time of sampling and appropriate gas-water partitioning coefficients,
CFC concentrations measured in surface-water samples were converted to equivalent partial pressures and divided
by the CFC concentration in 1995 NH mean annual air to yield percent saturation values (table 3). Strictly speak-
ing, only saturation values exactly equal to 100 percent would be saturated with respect to 1995 NH mean annual
air; however, because of uncertainties in measured temperature, air-water equilibration rates, and applicability of
the 1995 NH mean annual air value to the study area, saturation values in the range of 80 to 120 percent are con-
sidered representative of saturated or near-saturated conditions. Saturation values greater than 120 percent are
assumed to indicate the addition of CFC’s from nonatmospheric sources.

Data in table 3 indicate that the majority of surface-water samples were supersaturated with respect to one
or more CFC compounds; most samples had 2 to 5 times the equilibrium solubility concentration. A few samples
had extremely high CFC concentrations, such as the sample from Wolf Creek, which had a CFC-113 concentration
more than 2,200 times greater than the 1995 air-water equilibrium concentration. Surface-water samples with the
highest CFC concentrations were collected from main-stem reaches of the Great Miami, Mad, and Stillwater Rivers
near or south of downtown Dayton (fig. 16). Interestingly, large concentrations of CFC’s were not found down-
stream from wastewater-treatment plants despite the fact that sewage effluent has been shown to be a major source
of CFC’s in surface water at other locations (Busenberg and Plummer, 1993). Smaller tributary streams sampled at
sites in rural or nonindustrialized parts of the study area, such as Bear Creek, Holes Creek, Mud Creek, and Mud
Run, were approximately saturated with respect to all three CFC compounds.

Air. CFC-11, CFC-12, and CFC-113 concentrations in air samples collected at three sites in October 1995
are summarized in table 4.

Data for each of the three air-sampling sites were evaluated by calculating CFC excess values relative to the
NH mean annual air concentrations for 1995 (E. Busenberg, U.S. Geological Survey, written commun., 1996). Pos-
itive excess percentages indicate that CFC concentrations recorded at the site were higher than the NH mean annual
air values, whereas negative excess percentages indicate that values were lower than the NH mean annual air val-
ues.

Data in table 4 indicate that fluctuations in CFC concentrations in air in the Dayton area vary by individual
CFC compound, sampling date, and location. Samples from site Air 1, which is in a largely rural setting north of
metropolitan Dayton, had CFC concentrations that showed the least variation from day to day and were closest to
1995 NH mean air concentrations. Site Air 2, just north of downtown Dayton, and site Air 3, south of Dayton in
the heavily industrialized Moraine area, had more variable CFC-11 and CFC-12 concentrations with maximum
CFC-11 and CFC-12 excesses of about 33 and 15 percent. In contrast, CFC-113 concentrations in air at all three
sites were close to the NH mean air value for CFC-113, with no CFC-113 excess values greater than 5 percent.
Local deviations from NH mean air concentrations are commonly observed in urban and industrialized areas
(Prather, 1985; Clarke and others, 1995); average monthly CFC-11 and CFC -12 excesses of 10 to 15 percent were
recently reported for the New York-Long Island metropolitan area (Ho and others, 1998). Such CFC excesses result
in estimated CFC ages that are younger than the actual ground-water age. The limited air data obtained indicate
that the 5-percent limit used to determine whether ground-water samples have been contaminated by local sources
of CFC’s is conservative in that excesses of 10 or even 15 percent may characterize modern air in the Dayton area.
However, without local long-term records of such variations, it is impossible to correct the CFC input functions
used to estimate ground-water age; hence, the NH mean annual air concentrations were used to calculate the CFC
recharge years given in table 3.
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collected by other agencies at upgradient or adjacent wells could be used to identify areas where detection of trace
amounts fo VOC’s in ground water would be reasonable (table 5).

Results of CFC analyses indicated that halogenated VOC’s were detected at low levels in 45 percent (61) of
the wells. For 22 of the 45 wells where halogenated VOC’s were detected during CFC analysis, VOC detections
were reported in ground-water samples that had been collected and analyzed by other agencies as part of their
water-quality monitoring programs. The most commonly detected halogenated VOC was methylene chloride,
which is an ingredient in paint stripper and PVC cement. Carbon tetrachloride (also an ingredient of PVC cement),
methyl chloride, tetrachloroethylene, chloroform, and vinyl chloride were less commonly detected. About two-
thirds of the wells with detections of halogenated VOC’s were screened at depths less than 50 ft below the water
table.

Nitrous oxide peaks were detected in 27 percent of the wells sampled. More than 86 percent of the nitrous
oxide detections were in wells screened at depths less than 50 ft below the water table. Detections of nitrous oxide,
which is an intermediate product in the breakdown of nitrate, were associated with oxic conditions in the aquifer:
about 75 percent of the wells where nitrous oxide was detected produced water with DO concentrations greater
than 0.3 mg/L. DO can produce a response similar to that of nitrous oxide, and some of the nitrous oxide detections
(especially those where DO concentrations are several milligrams per liter or more) could be suspect.

Reduced-sulfur compounds (H,S or CH;SH), indicative of highly reducing conditions in the aquifer, were
detected in about 30 percent of the wells sampled. Reduced-sulfur detections were relatively evenly distributed
with depth throughout anoxic parts of the buried-valley aquifer.

Dissolved gases and evaluation of recharge temperature

Dissolved-gas data were collected to assess recharge temperatures for calculation of CFC partial pressures
and to determine whether methane was in ground-water samples that yielded discordant CFC ages. Nitrogen and
argon data were plotted against nitrogen-argon solubilities calculated for a total pressure of 760 mm Hg and excess-
air contents of 0 to 20 cm3/kg H,O using solubility data from Weiss (1970) (fig. 17). Nitrogen and argon data in
table 6 were normalized to a barometric pressure of 760 mm Hg prior to glotting to facilitate direct estimation of
recharge temperature. The excess-air values range from 2 to about 15 cm”/kg H,O; such quantities of excess air
imply recharge temperatures from about 10 to 30 C, with most data clustering around 20°C. An average recharge
temperature of 20°C is unreasonable given that the mean annual air temperature across the study area is between
11and 12°C (National Oceanic and Atmospheric Administration, written commun., 1992) and that mean ground-
water temperature for the 137 wells sampled in this study is 14°C. It is also inconsistent with temperature estimates
derived from oxygen and hydrogen isotope data and deuterium-excess values (see p. 37), which indicate that most
recharge to the buried-valley aquifer occurs during the fall and winter months.

The dissolved-gas data are more reasonably interpreted as being affected by denitrification. The effects of
excess nitrogen produced by bacterially mediated denitrification can be removed by extrapolating back to the air-
water equilibrium curve for zero excess air along a horizontal line equal to the normalized argon concentration of
the sample (fig. 17). This procedure results in a more restricted range of recharge temperatures between about
5and 16 C. The sample with the highest recharge temperature (16°C) was collected from a shallow well (MT-290)
located between the Great Miami River and a small well field operated by a private water company. Ground water
from this well has an >H->He age of only a few months and is probably being recharged by pumpage-induced infil-
tration of nearby river water. Therefore, its elevated temperature is probably reasonable; N,/Ar ratios of most other
wells imply recharge temperatures between 10-12°C, close to the mean annual air temperature for the study area.
The difference between the sample with the highest observed N, concentration (30.7 mg/L Nj; well GR-317) and
that of air-saturated water with the same Ar concentration (=17 mg/L N,) implies denitrification of about 14 mg/L
of nitrate (as N). Although elevated, this nitrate concentration is comparable to the maximum nitrate concentration
observed in this study (12.0 mg/L nitrate as N, well MT-289, located in a cornfield) and is in the upper range of
nitrate concentrations observed in shallow ground water underlying agricultural areas elsewhere in the United
States (Hamilton and Helsel, 1995).
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southwestern Ohio.
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Stable-isotope data indicate recharge temperatures between 8 and 11°C. Median 8D and §'80 values for
21 ground-water samples collected from wells in the buried-valley aquifer underlying WPAFB were -46.5 and
-7.65 per mil (Dumouchelle and others, 1993). Based on the latitudinal temperature dependence of stable-isotope
data (Van der Straaten and Mook, 1983), the median 6D and 5180 values for WPAFB area indicate ground-level
air temperatures of 9.1°C (range for all WPAFB data =7.6 to 9.8°C) and 10.6 C (range for WPAFB data =
9.2to 11.2°C), respectively. The deuterium excess parameter d (d = 0D - 85180) calculated from the median iso-
topic composition given above is +14.7 and ranges from +12.2 to +20.2 for all WPAFB data. The deuterium-excess
parameter d represents the y-intercept on a 5D-8180 plot and is known to vary regionally as well as seasonally
(Van der Stratton and Mook, 1983); d can therefore be used to infer not only sources but aiso timing of recharge.
Deuterium-excess values calculated for monthly 8D and §'80 precipitation data collected during 1966-71 at the
International Atomic Energy Agency monitoring station at Coshocton, Ohio, show strong seasonal variations:
average deuterium-excess values calculated for the 6-month periods April-September and October—March were
+10.3 and +15.0, respectively (International Atomic Energy Agency, 1971, 1973, 1975). Although the Coshocton
station is approximately 125 mi east-northeast of the study area, seasonal isotopic variations there are likely to be
similar to those in southwestern Ohio. The deuterium-excess values observed for the WPAFB data indicate that
most recharge to the buried-valley aquifer occurs during fall and winter.

On the basis of dissolved-gas and stable-isotope data, most ground water in the buried-valley aquifer appears
to have been recharged at temperatures between 9 and 11°C, with recharge occurring primarily in the fall and win-
ter. Hence, an average recharge temperature of 10°C is used to calculate CFC ages throughout the study area.
Recharge at temperatures outside of this range surely occurs, especially in shallow parts of the aquifer recharged
by pumping-induced infiltration of river water or during summer or winter floods, but such recharge can be con-
sidered regionally and temporally atypical.

Tritium, helium, and neon

Results of tritium, helium, and neon analyses of ground-water samples from 101 wells are discussed by Sha-
piro and others (1998) and are reproduced in table 7 (at back of report) with tritium data for samples from an addi-
tional 17 wells where noble gas and helium isotope data were not obtained. Also reported in table 7 are tritium data
for 13 wells sampled at or near the Mound Plant. For these samples, qualitative tritium determinations by Mound
Plant personnel indicated that these samples contained several hundred to several thousand TU. Because such high
tritium concentrations could contaminate the Lamont-Doherty analytical equipment, more precise analyses of the
tritium and helium isotopic composition of these samples were not attempted.

Results of 3He/*He isotope (6°He) analyses reported by Shapiro and others (1998) are also included in table
7, along with calculated values of several other parameters used for 3H-3He dating (including A*He, a measure of
‘He supersaturation; 4Herad, the calculated amount of radiogenic 4He in the sample; and 3H+3Hc, the calculated
sum of tritium and tritiogenic 3He). Recharge-year estimates calculated from the 3H-3He ages reported by Shapiro
and others (1998) were obtained for 95 of the 101 wells for which complete tritium, neon, and helium analyses
were available (table 7).

Shapiro and others (1998) reported that most wells screened near the water table in the buried-valley aquifer
yield water with tritium concentrations between 10 and 15 TU, a range consistent with that expected for modemn
precipitation. In deeper wells considered to be unaffected by local sources of tritium (such as landfills and the
Mound Plant), concentrations of tritium range from near zero to about 30 or 40 TU. Water samples from wells
downwind or downgradient from known or suspected tritium sources may have tritium concentrations of several
tens, hundreds, or thousands of tritium units. Shapiro and others (1998) showed that water from the buried-valley
aquifer that contains excess tritium from local sources can be identified by plotting the sum of tritium and tritio-
genic helium 3 [PH+>He,;,] against the >H->He recharge year. The addition of tritium from local sources is readily
discerned on such a graph because such samples will plot above the tritium-input curve for southwestern Ohio pre-
cipitation (see fig. 3 in Shapiro and others, 1998; fig. 22, this report).
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Table 6. Concentration of dissolved gases in water samples from wells screened in the buried-valley aquifer near Dayton,
Ohio

[SAC, Sidearm chamber analysis done within two weeks of sampling date; AMP, Analysis done in December 1995 on unused flame-sealed 62-milliliter
borosilicate glass ampule collected for chlorofluorocarbon analysis; mg/L, milligrams per liter; --, no data available. Methane data marked with asterisk
were from analyses of unused chlorofluorocarbon ampules)

. Samplin CH CO. o Ny Ar
Wellname  Sampling date metl’:odzg in m;/L in mgzlL in mi;lL mg/L in mg/L

GR-316 93/06/21 SAC 0.000 11.64 454 19.55 0.630
GR-317 93/06/21 SAC 0.000 25.60 0.09 30.69 0.622
GR-333 93/06/22 SAC 0.000 30.44 5.33 21.15 0.668
GR-540 93/06/23 SAC 0.000 15.61 1.21 23.12 0.675
MT-281 93/06/24 SAC 0.000 37.99 2.37 22.46 0.679
MT-282 93/06/24 SAC 0.000 37.46 1.10 2321 0.688
MT-283 93/06/23 SAC 0.000 38.41 0.05 24.78 0.680
MT-296 93/06/24 SAC/AMP 0.201, 0.356" 0.337" 17.50 0.02 23.16 0.697
MT-297 93/06/24 SAC/AMP 0.020, 0.099" 31.66 0.05 23.09 0.697
MT-286 93/06/25 SAC/AMP 0.000, 0.000" 21.76 0.03 24.05 0.770
MT-287 93/06/25 SAC 0.000 26.42 0.04 22.94 0.755
MT-290 93/06/25 SAC 0.000 11.16 0.16 20.15 0.591
GR-334 93/06/22 AMP 0.044 - - - -
GR-324 93/06/22 AMP 0.045 - - - -
GR-323 93/06/22 AMP 0.021 - - - -
MT-303 93/08/11 AMP 0.168, 0.197 - - - -
MT-68 93/08/13 AMP 0.025 - - - -
MT-311 93/08/13 AMP 0.097, 0.107 - - - -
MT-305 93/08/13 AMP 0.491 - - - -
MT-288 93/08/16 AMP 0.010 - - - -
MT-347 93/10/07 AMP 0.006 - - - -
MT-327 94/08/01 AMP 0.133 - - - -
MT-318 94/08/03 AMP 0.016 - - - -
MT-333 94/08/04 AMP 0.195 - - - -
MT-337 94/08/10 AMP 0.030 - - - -
MT-153 94/08/19 AMP 0.012 - - - -
GR-319 94/08/23 AMP 0.044 - - - -
MT-343 94/08/30 AMP 0.007 - - - -
MT-342 94/08/30 AMP <0.003 - - - -
MT-344 94/08/30 AMP 0.006 - - - -
MT-360 94/08/31 AMP 0.060 - - - -
MT-376 94/08/31 AMP 0.107 - - - -
MT-355 94/08/31 AMP <0.003 - - - -
MT-375 94/09/01 AMP <0.003 - - - -
MT-404 94/09/01 AMP 0.031 - - - -
MT-405 94/09/01 AMP 0.213 - - - -

Of the 95 wells for which complete gas and isotopic analyses were available, Shapiro and others (1998)
reported that the concentrations of neon were fairly uniform with depth but were higher than those expected for
solubility equilibrium with the atmosphere. The range of reported neon concentrations indicates excess-air concen-
trations of O to 13 cm’/kg H,O (mean = 3.2 cm%/kg H,0), a range that is consistent with the excess-air concentra-
tions indicated by the N,/Ar data (fig. 17). In contrast, concentrations of “He ranged from near atmospheric
equilibrium to values several orders of magnitude greater than those expected for air-water equilibrium. Shapiro
and others (1998) reported that the average percent supersaturation of “He above solubility equilibrium is about
37 percent for shallow wells and 274 percent for deeper wells. Although low degrees of “He supersaturation are
probably related to excess air, substantially higher values indicate the presence of excess (radiogenic) “He derived
from the decay of uranium and thorium-bearing minerals in shale-rich bedrock or lithic fragments in glacial sedi-
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ments. The presence of significant amounts of radiogenic helium complicates the determination of the H-3He age.
Shapiro and others (1998) reported that nearly 60 percent of the ground-water samples required corrections for
radiogenic helium before reasonable *H-He ages could be calculated.

RELIABILITY OF GROUND-WATER AGES

Ground-water ages estimated by use of the CFC and 3H->He methods are regarded as apparent ages and
require careful review in the geochemical and hydrologic context of the study area. In the following sections, the
reliabilities of CFC- and >H-3He-derived ground-water ages are evaluated in view of current understanding of
ground-water flow and hydrogeology in the buried-valley aquifer.

Chlorofluorocarbon ages. To evaluate the reliability of age estimates derived by the CFC technique,
ground-water ages (expressed as recharge years) obtained for CFC-11, CFC-12, and CFC-113 were compared by
means of scatterplots. Under ideal conditions, ages derived from all three CFC compounds would be identical, and
paired data sets would plot along a 1:1 correspondence line. CFC ages obtained for this study are full of inconsis-
tencies, however, and for many samples estimated recharge years calculated for different CFC compounds differ
by 30 years or more (fig. 18). For CFC-11 and CFC-12, the ages of about 20 percent of the samples are in reason-
able agreement. Most samples, however, particularly those collected from anoxic parts of the buried-valley aquifer
(DO less than 0.3 mg/L) plot below the 1:1 line (fig. 18). The downward shift, reflecting CFC-11 ages that are sig-
nificantly older than CFC-12 ages, is a pattern observed in other aquifers where microbial degradation of CFC-11
under anoxic conditions is suspected (Dunkle and others; 1993, Cook and others, 1995). Data points that plot above
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Figure 18. CFC-11 and CFC-113 recharge year as a function of CFC-12 recharge year for ground water
from the buried-valley aquifer, Dayton area, southwestern Ohio. (Error bars reflect CFC age errors
reported in table 3).
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the 1:1 correspondence line may indicate degradation of CFC-12 relative to CFC-11 or CFC-113; however,
because CFC-12 has been shown to be the most resistant to microbial degradation under anoxic conditions (Lovely
and Woodward; 1992, Katz and others, 1995), these data points probably reflect minor contamination of the sam-
ples, resulting in younger CFC-11 and CFC-113 ages relative to the CFC-12 ages.

Another check on the consistency of the CFC ages is to compare CFC recharge years with measured tritium
concentrations, as is done for CFC-12 ages in fig. 19. If the CFC-12 ages are reliable, then the data points in fig. 19
should plot on or near the tritium-input curve for southwestern Ohio rainwater. Although some data points plot near
the curve (particularly those with measurable DO concentrations recharged after 1975), several samples with ele-
vated tritium concentrations (10-58 TU) have pre-1950 CFC-12 ages. Such elevated tritium concentrations are not
reasonable for waters that recharged the buried-valley aquifer prior to the start of atomic weapons testing in the
early 1950’s. These observations support the hypothesis that microbial degradation of the CFC-12 has occurred. A
final chemical check on the consistency of the CFC-12 ages is to compare them to the 3H-He ages reported by
Shapiro and others (1998). This comparison provides further support that microbial degradation of CFC-12
occurred because nearly all of the anoxic ground-water samples plot below the 1:1 correspondence line (fig. 20).
Agreement is closer between CFC-12 and >H->He ages where the ground water has measurable DO, but even a few
of these samples show marked disagreement (fig. 20)
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Figure 19. Tritium concentrations as a function of CFC-12 recharge year for ground water from the
buried-valley aquifer, Dayton area, southwestern Ohio. (Horizontal bars reflect CFC-12 age error as given
in table 3. Bold line gives estimated concentration of tritium in rainwater from southwest Ohio, corrected
for radioactive decay through mid-1993.)
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The data highlighted in the preceding discussion indicate that redox conditions in the buried-valley aquifer
are affecting the reliability of the CFC ages. Agreement between the CFC-12 and 3H-3He ages is usually close
when ground water contains measurable concentrations of DO and nitrate (fig. 21). As concentrations of oxygen
and nitrate drop below detection limits, however, the difference between the two ages exceeds the analytical uncer-
tainty. There is no distinct correlation between the concentration of dissolved iron and the difference between the
two ages; however, it appears that when methane concentrations are greater than 0.05 mg/L, complete degradation
of CFC-12 occurs, resulting in age differences as high as 30 or 40 years (fig. 21). Difference between 3H-3He ages
and CFC-12 ages is negative for a few samples, probably because of contamination that results in CFC-12 ages
that are too young.

Tritium-helium-3 ages. Unlike CFC’s, the concentration of tritium and its daughter product, helium-3, are
not affected by microbial degradation; however, processes such as hydrodynamic dispersion or the addition of
radiogenic helium can affect the reliability of 3H-3He ages (Solomon and Sudicky, 1991; Shapiro and others, 1998).
Hence, the consistency of the >H->He ages must be assessed. As reported by Shapiro and others (1998), the first
check on the consistency of the 3H-He ages is to compare the sum of tritium and tritiogenic helium [3H+3Hem[]
with the estimated tritium concentrations for southwestern Ohio rainwater as a function of H->He recharge year.
If the calculated H->He ages are accurate, then the [*H+>He,;,] concentrations should reflect the amount of tritium
in rainwater at the time of recharge to the buried-valley aquifer and should therefore plot on or close to the tritium-
input curve. Because [3H+3Hetm] values for most samples plot on or near the tritium-input curve, particularly for
waters recharged after 1970 (fig. 22), the correction procedure developed by Shapiro and others (1998) seems rea-
sonable. These workers also report that samples of water recharged after 1980 that plot above the tritium-input
curve were probably affected by tritium releases to the atmosphere or land surface from local sources, such as the
Mound Plant or waste-disposal facilities. Samples that plot below the curve are either affected by hydrodynamic
dispersion or are pre-atmospheric-testing waters that have mixed with small amounts of younger, tritiated ground
water (Shapiro and others, 1998).
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Figure 22. Sum of tritium and tritiogenic helium 3 [3H+2He] as a function of *H-3He recharge year for ground

water from the buried-valley aquifer, Dayton area, southwestern Ohio. (Horizontal bars reflect age errors
reported by Shapiro and others, 1998, and shown in table 7; figure modified from Shapiro and others, 1998).
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the buried-valley aquifer, Dayton area, southwestern Ohio. (Horizontal bars reflect age errors
rel;qaortta;iglz);i/3 ;Shapiro and others, 1998 and shown in table 7; figure modified from Shapiro and
others .

Shapiro and others (1998) also evaluated the 3H->He ages for consistency with current knowledge of hydro-
logic processes and ground-water flow in the buried-valley aquifer. This was done in a general way by examining
the relation between *H-He age and depth for the entire study area. It was found, as expected, that ground-water
age generally increases with depth (fig. 23). Most of the data shown on the age-depth plot indicate vertical veloci-
ties in the range of 1 to 5 ft/yr, flow velocities that are consistent with existing data on aquifer recharge rates and
sediment porosity (Dumouchelle and others, 1993; Dumouchelle, 1998).

Shapiro and others (1998) provide detailed discussions of age-depth relations in selected parts of the buried-
valley aquifer including the Miami-North Miami Well Fields, the WPAFB-Mad River Well Field area, and the
Mound Plant. With some exceptions, the geologic sections provided by Shapiro and others (1998) show that
3H-3He ages increase with increasing depth and distance along major flowpaths in these areas. Exceptions to this
trend are commonly related to pumping effects; for instance, Shapiro and others (1998) reported that 3H-He ages
decrease as flowpaths approached major pumping centers. In addition, monitoring wells between production wells
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Major ions and selected trace constituents

Several patterns can be observed when selected major and trace constituent data are plotted against the
3H-3He ages. For calcium, magnesium, and alkalinity, the pattern is similar to that for pH; no particular trend is
evident in the data, particularly for waters recharged after 1965 (fig. 27). For older, pre-1965 waters, scatterpoints
for these constituents tend to cluster around a central value. These patterns suggest an approach to equilibrium with
carbonate minerals in aquifer sediments. This hypothesis is supported by temporal trends in the saturation indices
of the two main carbonate minerals found in buried-valley aquifer sediments, dolomite and calcite (fig. 27). In both
cases, young ground water quickly approaches saturation or supersaturation with respect to calcite. Furthermore,
with increasing age, ground water appears to reach equilibrium with dolomite while becoming slightly supersatu-
rated with respect to calcite. Because pH and alkalinity also are controlled by carbonate equilibria, temporal trends
in these properties are similar to those observed for calcium and magnesium. Alkalinity, pH, and hardness of older
buried-valley aquifer ground water will therefore vary within a limited range that is controlled by water-rock reac-
tions. Deviation from these trends is probably related to chemical changes in the buried-valley aquifer caused by
infiltration of alkaline landfill leachate, organic contaminants, or acidic waste fluids.

The most common temporal trend observed in the major-ion and trace-constituent data is that the number of
outliers and overall scatter in the data increase with decreasing ground-water age; most outliers tend to be associ-
ated with ground water recharged after 1980. Examples of this general pattern include sodium, chloride, nitrate,
organic carbon, and boron (fig. 28). Other constituents not shown that have similar trends are ammonia, bromide,
phosphate, potassium, and sulfate. This pattern probably reflects the effects of various human activities on the qual-
ity of recharge to the buried-valley aquifer in recent years. For instance, elevated concentrations of sodium, potas-
sium, bromide, and chloride are probably related to application of deicing salts or leakage of septic-tank effluent,
particularly for shallow wells. Similarly, elevated concentrations of boron may be related to infiltration of treated
sewage effluent or landfill leachate, whereas high nitrate concentrations may be related to increased use of nitrate-

based fertilizers. The tendency towards lower concentrations and few if any outliers in the older (pre-1960) ground- ®*

water samples for this group of constituents suggests that water this old has not been directly influenced by human
activities. —_— T

An alternative hypothesis is that hydrodynamic dispersion or other natural processes in the buried-valley
aquifer have attenuated previously elevated concentrations of these constituents to background levels. In the case
of nitrate, measurable concentrations of nitrate are rarely found in ground water recharged prior to the mid-1970’s.
Excess nitrogen found in dissolved-gas samples (see fig. 17) strongly indicates denitrification in the buried-valley
aquifer. Denitrification will occur after DO has been consumed (Korom, 1992), a fact consistent with the observa-
tion that measurable DO is rarely found in ground water recharged prior to 1980. Denitrification is also consistent
with previous findings that nitrate is rarely present at detectable concentrations in anoxic parts of the buried-valley
aquifer below WPAFB (Rowe, 1996). The data shown in fig. 28 indicate that, given sufficient time (10 to 20 years),
denitrification in the buried-valley aquifer can reduce the concentration of nitrate derived from human activities to
levels that will not affect human health. However, in areas where induced infiltration is used to augment ground-
water production from the buried-valley aquifer, traveltimes will likely be too short to allow the complete break-
down of dissolved nitrate in streamwater.

The final temporal trend of note involves constituents that are found at reduced or nondetectable concentra-
tions in very young ground water. As ground-water age increases, constituent concentrations may increase sharply
and erratically, as is the case for dissolved iron, or may increase gradually with time, as is true for dissolved silica
(fig. 29). Other constituents that have similar sharp or gradual temporal trends are manganese and fluoride. For both
iron and silica, concentrations in the older waters approach a restricted range of values. On the basis of saturation-
index calculations, the temporal trends for iron and silica seem to be related to gradual equilibration with a ferrous
iron carbonate mineral (siderite) and microcrystalline quartz (chalcedony), respectively. For both iron and silica, a
fairly constant degree of supersaturation is observed for waters recharged prior to the mid-1970’s, indicating that
a state of metastable equilibrium has been achieved (fig. 29).
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dolomite as a function of H He recharge year for ground water from the buried-valley aquifer, Dayton
area, southwestern Ohio. (3H-3He ages from Shapiro and others, 1998.)
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concentrations as a function of 3H- He recharge year for ground water from the buried-valley aquifer,
Dayton area, southwestern Ohio. (°H-3He ages from Shapiro and others, 1998.)
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Figure 29. Iron concentration, saturation index of siderite, silica concentration, and saturation index
of chalcedony as a function of 3H-3He recharge year for ground water from the buried-valley aquifer,

Dayton area, southwestern Ohio. (3H-3He ages from Shapiro and others, 1998.)
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For iron (and to a lesser extent manganese), measurable concentrations are found only in anoxic ground
water. Thus, ground water that does not contain measurable concentrations of dissolved iron is likely to be very
young because, as shown previously, oxic ground water in the buried-valley aquifer also tends to be very young.
As a result, the approach to equilibrium with respect to siderite partly reflects the transition from oxic to anoxic
conditions that occurs as ground water flows through the aquifer. With regard to silica, very young (post-1990)
ground water tends to have concentrations between 5 and 10 mg/L. Several very young ground-water samples were
collected from shallow wells adjacent to large streams where induced infiltration of river water was believed to be
occurring. These samples all had silica concentrations less than 8 mg/L, consistent with the observation that silica
concentrations in river water in the study area are generally low; the median silica concentration for all surface-
water samples collected during September—QOctober 1995 for this study was 5.8 mg/L (fig. 15). Long-term data col-
lected at the USGS National Stream-Quality Accounting Network station on the Great Miami River at
New Baltimore, Ohio (approximately 30 mi downstream from Dayton), show a median silica concentration of
5.2 mg/L for 131 quarterly samples collected between 1974 and 1993 (range = <0.1 to 10.0 mg/L). Therefore, low
silica concentrations appear to be a good indicator of ground water affected by significant amounts of recharge from
adjacent streams or river-fed artificial-recharge lagoons.

The data in fig. 29 show that a constant rate of supersaturation with respect to chalcedony is reached within
15 to 20 years after recharge and that waters recharged prior to 1970 are characterized by dissolved silica concen-
trations of about 16 mg/L. Similar correlations between silica concentration and ground-water age have been
reported for shallow sand and gravel aquifers of the Delmarva Peninsula in northeastern Maryland (Bohlke and
Denver, 1995). It should be noted that waters affected by landfill leachate or alkaline waste fluids will contain arti-
ficially high silica concentrations because the solubility of glass and most silica-bearing minerals increases sharply
at pH > 9. Despite such exceptions, silica concentration seems to be an inexpensive indicator for distinguishing
between recently recharged ground water and ground water recharged more than 20 or 30 years ago, especially
when combined with other qualitative indicators of ground-water age such as nitrate and DO.

Halogenated volatile organic compounds

Of the 95 wells for which hydrologically reasonable H-He ages are available, 41 wells (43 percent) pro-
duced water with detectable concentrations of halogenated VOC’s such as methylene chloride, trichloroethylene,
or vinyl chloride. The observed age distribution indicates that most VOC detections (34 out of 41 wells, about
83 percent) are associated with young or very young ground water—water that recharged the aquifer after 1980
(fig. 30). This result is not surprising given that 60 percent of the wells with hydrologically reasonable *H->He ages
are screened at depths 50 ft or less below the water table, and a plot of all samples for which 3H-3He ages are avail-
able as a function of depth confirms that most VOC detections are associated with shallow wells (fig. 30). Never-
theless, for some wells where saturated thicknesses above the intake were greater than 140 ft, samples also had
detectable concentrations of VOC’s. Rowe (1996) reported similar depth distributions for VOC’s and other con-
taminants at WPAFB.
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Figure 30. (A) Ground-water age distribution among wells where halogenated volatile organic compounds
(VOC'S) were detected and (B) distribution of halogenated-VOC detections and nondetections in relation
to well depth and 3H-3He age for ground water from the buried-valley aquifer, Dayton area, southwestern
Ohio. (3H-3He ages from Shapiro and others, 1998.)

SUMMARY AND CONCLUSIONS

An environmental tracer study was done in conjunction with efforts to develop a regional ground-water flow
model of the buried-valley aquifer in the Dayton area in southwestern Ohio. Objectives of the environmental tracer
study were to (1) use newly developed environmental tracer techniques to estimate the age of ground water in the
buried-valley aquifer, (2) apply estimates of ground-water age to the calibration and refinement of numerical flow
models of selected parts of the buried-valley aquifer, and (3) characterize temporal trends in the quality of water in
the buried-valley aquifer. Dating methods based on the measurement of chlorofluorocarbons (CFC method) and
tritium and helium isotopes (CH->He method) were used to estimate the age of ground water collected from
137 wells. Most of these wells were in three main areas near Dayton: (1) the WPAFB-Mad River Well Field area,
(2) the Miami and North Miami Well Fields north of downtown Dayton, and (3) the Mound Plant near Miamisburg,
Ohio.

Results of environmental-tracer sampling indicate that the CFC method is unreliable a@iating technique
in the buried-valley aquifer because of ground-water contamination by local sources of CFC’s or microbial degra-
dation. On average, about 25 percent of the samples had concentrations of one or more CFC compounds that were
above those expected for the air-water equilibrium value at the time of sampling. CFC ages obtained for anoxic
ground-water samples unaffected by contamination were inconsistent with measured tritium concentrations. In sev-
eral instances, ground-water samples that lacked detectable concentrations of CFC-12 (indicative of a pre-1945
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recharge year) contained 20 to 30 tritium units, and therefore a significant component of post-1952 recharge.
Anoxic conditions, which are found throughout most of the buried-valley aquifer, appear to be responsible for
enhanced microbial degradation of the CFC compounds. Limited dissolved-gas data indicate that when methane
concentrations exceed 0.05 mg/L, rapid degradation of all CFC compounds occurs. Further research is needed to
define the origin and distribution of methane in the buried-valley aquifer and its role in the degradation of CFC’s.

In contrast, Shapiro and others (1998) reported that ground-water ages obtained by the 3H-*He method were,
for the most part, consistent with known tritium geochemistry. For most samples, the sum of tritium and tritiogenic
helium-3 [*H+He,;,] plotted as a function of *H-He age was in close agreement with the estimated tritium-input
function for southwestern Ohio rainwater. Deviations from the rainwater curve were attributed to (1) dispersive
effects that lowered reconstructed peak tritium values, (2) mixing at discharge areas that caused some WPAFB
samples with low [3H+3Hem[] values to have ages that were less than expected, and (3) local tritium contamination
that caused some samples to have [3H+3Hemt] concentrations above the tritium-input curve for southwestern Ohio
rainwater. The latter included water samples collected from wells near the Mound Plant and waste-disposal facili-
ties. This finding is important because it provides a method for identifying ground water that has been affected by
small, local releases of tritium as either vapor or liquid.

Hydrologic consistency of the 3H->He ages was also evaluated by examining trends in 3H->He agesasa
function of depth and distance along flowpaths delineated by use of existing water-level data or particle-tracking
analysis. Shapiro and others (1998) constructed schematic geologic sections along regional flowpaths near the
Miami-North Miami Well Fields area and the WPAFB-Mad River Well Field area. With few exceptions, these sec-
tions show that ground-water age increases with depth and increased distance along the flowpaths. Ground-water
age decreased as the distance from large well fields decreased because of the combined effects of pumping and
induced infiltration.

The fact that 3H->He ages were, for the most part, geochemically and hydrologically consistent is an impor-
tant finding because successful application of the 3H-*He method in the buried-valley aquifer depended on over-
coming several complications that were either not present or were not addressed in previous investigations: (1) the
size and hydrogeologic complexity of the buried-valley aquifer, (2) the mostly anoxic conditions that prevented
comparison of the 3H-3He ages with largely unreliable CFC ages, (3) the use of existing wells with variable screen
lengths and diameters, (4) the high rates of pumping and induced infiltration, and (5) the local tritium contamina-
tion in several parts of the buried-valley aquifer. In addition, nearly 60 percent of the *H->He samples required cor-
rections for excess radiogenic helium before hydrologically reasonable ages could be calculated. However, Shapiro
and others (1998) showed that the corrected >H->He ages of samples that had excess radiogenic helium were as
consistent as those derived from samples that did not have excess helium. Although some data support the hypoth-
esis that excess radiogenic helium is derived from underlying Ordovician shales, other data indicate that it may be
generated by the decay of uranium and thorium contained in lithic fragments in glacial sediments. Further research
will be needed to clarify the origin of the excess radiogenic helium in the buried-valley aquifer.

After the chemical and hydrologic consistency of the 3H-3He ages was established, the ages could then be
applied to the calibration and refinement of ground-water flow models. Application of the SH-He ages reported by
Shapiro and others (1998) to the calibration and refinement of numerical ground-water flow models of the buried-
valley aquifer near Dayton is described by Sheets and others (1998). These workers showed that initial agreement
between simulated traveltimes and >H->He ages was close, particularly for shallow parts of the buried-valley aqui-
fer. In deeper parts of the aquifer where significant discrepancies between the simulated traveltimes and the
3H-He ages were observed, these investigators describe procedures for making hydrologically reasonable adjust-
ments to the numerical models that yielded improved agreement between the simulated traveltimes and 3H-He
ages. Such improvements can lead to increased confidence in model-based predictions concerning the fate and
transport of ground-water contaminants such as VOC’s or trace elements. These procedures can also be used to
evaluate and improve the recently completed regional ground-water flow model of the buried-valley aquifer
described by Dumouchelle (1998).

H-’He ages were plotted against selected properties and constituents in ground-water samples to determine
whether temporal trends in ground-water quality of the buried-valley aquifer could be identified. Distinct temporal
trends were not identified for pH, temperature, specific conductance, redox potential, calcium, magnesium, or alka-
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linity. The absence of trends in pH, alkalinity, and calcium and magnesium concentrations was attributed to equil-
ibration of water with carbonate minerals in aquifer sediments. Temporal trends in which the number of outliers
and degree of scatter in the data increased as ground-water age decreased were characteristic of several constituents
including sodium, potassium, boron, bromide, chloride, ammonia, nitrate, phosphate, sulfate, and organic carbon.
Elevated concentrations of these constituents are probably related to human activities. For many of these constitu-
ents, however, ground water recharged prior to 1970 is characterized by distinctly lower concentrations and
reduced scatter in the data. Temporal trends in which constituent concentrations decline as ground-water age
increases could also reflect natural processes that reduce constituent concentrations to low levels. For example, the
absence of measurable nitrate concentrations in ground water recharged prior to 1980 probably reflects removal of
nitrate by bacterially mediated denitrification.

Temporal trends of DO, iron, nitrate, and silica indicate that these constituents may be useful for identifying
wells receiving recent (post-1990) recharge, particularly if combined with tritium measurements. Lower concen-
trations of dissolved silica tend to be associated with ground water recharged after the mid-1970’s, whereas older
(pre-1970’s) ground water appears to have reached a state of metastable equilibrium with respect to siderite and
chalcedony. Silica may also be a useful indicator of wells affected by induced infiltration of surface water. Further
research is required to evaluate the reliability of the above-listed constituents as qualitative age-dating tools and to
determine their applicability to other buried-valley aquifers in glaciated parts of the United States.

Perhaps the principal finding of the environmental tracer study is that ground water in the buried-valley aqui-
fer near Dayton is relatively young, with ages ranging from a few months to a few years in shallow parts of the
aquifer and from a few years to a few decades in the deeper parts of the aquifer. The presence of young ground
water throughout the regional hydrogeologic system reflects natural as well as human factors: it is consistent with
the high transmissivity of the sand and gravel deposits that make up the aquifer and the high pumping rates that
induce infiltration of large amounts of surface water. Temporal trends in ground-water quality indicate that the
effects of human activities are readily discerned in shallow parts of the aquifer, that overall vulnerability of the bur-
ied-valley aquifer to contamination is high, and that ongoing efforts to protect the aquifer will need to continue in
order to preserve the current ground-water quality.
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